메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Tasuku, KATO (International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology) Satoko, OMINO (International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology) Ryota, TSUCHIYA (International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology) Satomi, TABATA (NIPPON KOEI CO., LTD.)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2015년도 학술발표회
발행연도
2015.1
수록면
238 - 238 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0