메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
손경환 (세종대학교 건설환경공학과) 배덕효 (세종대학교 건설환경공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2015년도 학술발표회
발행연도
2015.1
수록면
22 - 22 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
가뭄은 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중일지라도 미리 감지만 한다면 그 피해를 최소화할 수 있다. 이로 인해 미국 등 수문기상 선진국에서는 수문기상 장기예보자료로부터 가뭄전망정보 생산기술을 개발하였으며, 특히 가뭄전망의 정확도 향상을 위해 여러 통계적 보정기법을 적용하고 있다. 국내의 경우 기상청에서 가뭄전망을 목적으로 2011년에 수치예보모델을 이용하여 가뭄전망정보를 생산한바 있으나, 전망정보의 불확실성 문제로 가뭄예보에 활용하는데 한계가 있어 이를 개선할 수 있는 기술개발이 요구되는 실정이다. 본 연구에서는 기후예측자료를 이용하여 가뭄전망정보 생산기술을 개발하고 정확도 개선을 위해 베이지안 기법을 연계하였다. GloSea5 (Global Seasonal forecast model 5) 장기예보자료를 이용하였으며, 베이지안 기법을 통해 과거 관측자료에 대한 사전분포, 모델의 전망정보로부터 우도함수를 유도하여 최종 사후분포를 추정하였다. 베이지안 기법 적용 전 후에 따른 가뭄지수를 산정하였다. 관측자료 기반의 가뭄지수와의 비교분석을 통해 선행기간 및 계절별 가뭄예측 성능을 평가하였으며, 실제 가뭄기간 동안에 가뭄의 재현성을 지역별로 분석하였다. 장기예보자료만을 활용한 기존 가뭄전망에서는 관측 자료가 포함된 1개월 전망에서도 불확실성이 매우 높았지만 베이지안 기법 적용으로 가뭄전망의 정확도가 크게 개선되었다. 특히, 1, 2개월 전망의 시계열 가뭄지수가 관측기반의 가뭄지수의 거동과 매우 유사하게 나타났으며, 지역별로도 베이지안 기법 적용시 실제 가뭄피해 상황을 적절히 재현하는 것으로 나타났다. 국내 가뭄예보에 있어 기후예측정보를 단순활용하기 보다는 베이지안과 같은 통계적 보정기법을 이용하여 가뭄전망정보를 생산하는 것이 바람직하며, 본 연구에서는 가뭄예보업무에 활용될 수 있도록 베이지안 기법에 대한 검증 및 평가를 지속적으로 수행할 계획이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0