메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김주곤 (영남대학교 전기전자공학부)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
발행연도
1997.1
수록면
35 - 39 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 음소를 인식의 기본단위로 하는 한국어 단어인식 시스템의 인식정도를 개선하기 이해 각 음소의 시간방향의 정보를 포함하고 있는 동적특징인 회귀계수와 K-L(Karhunen-Loeve)변환으로 얻은 특징파라미터(이하 K-L계수라 함)를 이용하여 음소인식과 단어인식 실험을 수행한 결과 그 유효성을 확인하였다. 이를 위해 먼저 파열음을 대상으로 정적 특징과 파라미터인 멜-켑스트럼(Mel-Cepstrum)과 동적 특징 파라미터인 회귀계수(Regressive Coefficient) 와 K-L 계수(Karhunen-Loeve Coefficient)를 추출하여 음소 인식실험을 수행하였다. 그 결과 멜-켑스트럼을 사용한 경우 39.84%, 회귀계수를 사용한 경우 48.52%, K-L계수를 사용한 경우 52.40%의 인식률을 얻었다. 이를 참고로 각각의 특징 파라미터를 결합하여 인식실험한 결과 멜-켑스트럼과 K-L계수를 사용한 경우 47.17%,멜 -켑스트럼과 회귀계수의 경우 60.11%,K-L계수와 회귀계수의 경우 60.35%, 멜-켑스트럼과 K-L계수 , 회귀계수를 사용한 경우 58.13%를 인식률을 얻어 동적특징인 K-L 계수와 회귀계수를 사용한 경우와 멜-켑스트럼과 회귀계수를 사용한 경우가 높은 인식률을 보였으며 이를 단어로 확장하여 인식실험을 수행한 결과 기존의 특징 파라미터를 이용한 경우보다 높은 인식률을 얻어 동적 파라미터의 유효성을 확인하였다

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0