메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권영길 (경북대학교 농화학과) 조래광 (경북대학교 농화학과)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제41권 제2호
발행연도
1998.1
수록면
160 - 165 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
쌀의 품종 식별 기술은 아직까지 적절한 방법이 연구되지 않아, 최근 불법 유통사례가 빈번히 발생하고 있다. 따라서 본 연구에서는 보다 신속하게 현장에서 응용가능한 쌀의 품종을 식별하기 위해서, 비파괴 측정법 중 화상처리법을 응용하였다. MFG board, CCD camera, Zoom lens 및 Ring light로 구성된 화상처리 장치로 쌀알의 영상을 취득하여, Threshold, Median filtering으로 쌀알 영상의 노이즈를 제거하고, 윤곽을 추출하여 중심점에서 360도 각도에 대한 가장자리까지의 거리를 쌀알의 화상데이타로 이용하였다. 쌀 품종 내에서 영상 변이는 다소 있었지만, 형태가 상이한 쌀 품종에서는 품종간 변이 보다 품종 내의 변이가 적었으며, 동일 품종의 쌀알의 착립위치에 따라서는 변이 폭이 매우 적었다. 추출된 화상 데이터는 Normalize, FFT의 전처리 과정으로 정규화 및 변수 축소가 가능하였다. 각 품종의 쌀알의 평균 영상에 Matching하는 Library model과 BP neural network model에 의한 품종 판별 결과, 형태가 상이한 품종간에는 100% 판별 가능하였으며, 형태가 유사한 품종간에는 85%의 판별 결과를 나타내었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0