메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이경훈 (전남대학교 공과대학 토목공학과) 문병석 (서남대학교 공과대학 토목공학과) 강일환 (전남대학교 공과대학 토목공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제31권 제6호
발행연도
1998.1
수록면
821 - 832 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (8)

초록· 키워드

오류제보하기
본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 또한 1일 급수량 예측에 있어서 필요한 변수 선택을 위해 입력자료를 상관분석, 자기상관, 부분자기상관, 교차상관 분석 등을 하였으며 동정된 입력변수는 급수량, 평균기온, 급수인구이다. 먼저 급수량, 평균기온, 급수인구로 모델을 구성하였고, 한편으론 기상청의 기후예보자료를 신뢰할 수 없는 경우에는 급수량을 예측할 수 있도록 급수량 자료만으로 모델을 구성하여 그 유효성을 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 포함하고도 실측치와 모형의 예측치와의 오차율이 최대 18.46%, 평균2.36% 이내로 나타나, 모형의 결과는 상수도 시설의 운용 및 급·배수관망의 실시간 제어에 많은 도움을 주리라 생각된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0