메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김홍일 (대진대학교 컴퓨터공학과) 이혜명 (경문대학교 인터넷미디어정보과)
저널정보
한국컴퓨터산업교육학회 컴퓨터산업학회논문지 컴퓨터산업학회논문지 제4권 제12호
발행연도
2003.1
수록면
887 - 900 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터베이스의 많은 응용분야에서 대용량 고차원 데이터의 클러스터링을 요구하고 있다. 이에 따라 클러스터링 알고리즘에 대한 많은 연구가 이루어지고 있으나 기존의 알고리즘들은 “차원의 저주”에 기인하여 고차원 공간에서 효과적 및 효율적으로 수행하지 못하는 경향이 있다. 더욱이, 고차원 데이터는 상당한 양의 잡음 데이터를 포함하고 있으므로 알고리즘의 효과성 문제를 야기한다. 그러므로 고차원 데이터의 구조와 다양한 특성을 지원하는 적합한 클러스터링 알고리즘이 개발되어야 한다. 본 논문에서는 지금까지 연구된 고차원 클러스터링 기법을 조사한 후, 각 기법의 장단점과 적합한 응용 분야에 대한 비교 및 분석을 통하여 분류한다. 특히 본 논문에서는 최근의 연구를 통하여 개발한 점진적 프로젝션 기반의 클러스터링 알고리즘인 CLIP의 성능을 기존의 알고리즘과 비교 분석함으로써 그 효율성 및 효과성을 입증한다. 이러한 알리즘들의 소개 및 분류를 통하여 향후의 더욱 향상된 클러스터링 알고리즘 개발에 기반이 되고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0