메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심경 (아이리스닷넷 시스템개발연구소)
저널정보
한국정보관리학회 정보관리학회지 정보관리학회지 제23권 제4호
발행연도
2006.1
수록면
277 - 294 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 실재 시스템 환경에서 문헌 분류를 위해 범주화 기법을 적용할 경우, 범주화 성능이 어느 정도이며, 적정한 문헌범주화 성능의 달성을 위하여 분류기 학습에 필요한 범주당 가장 이상적인 학습문헌집합의 규모는 무엇인가를 파악하기 위하여 kNN 분류기를 사용하여 실험하였다. 실험문헌집단으로15만 여건의 실제 서비스되는 데이터베이스에서 2,556건 이상의 문헌을 가진 8개 범주를 선정하였다. 이들을 대상으로 범주당 학습문헌수 20개(Tr-20)에서 2,000개(Tr-2000)까지 단계별로 증가시키며 8개 학습문헌집합 규모를 갖도록 하위문헌집단을 구성한 후, 학습문헌집합 규모에 따른 하위문헌집단 간 범주화 성능을 비교하였다. 8개 하위문헌집단의 거시평균 성능은 $F_1$ 값 30%로 선행연구에서 발견된 kNN 분류기의 일반적인 성능에 미치지 못하는 낮은 성능을 보였다. 실험을 수행한 8개 대상문헌집단 중 학습문헌수가 100개인 Tr-100 문헌집단이 $F_1$값 31%로 비용대 효과면에서 분류기 학습에 필요한 최적정의 실험문헌집합수로 판단되었다. 또한, 실험문헌집단에 부여된 주제범주 정확도를 수작업 재분류를 통하여 확인한 후, 이들의 범주별 범주화 성능과 관련성을 기반으로 위 결론의 신빙성을 높였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0