메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김기석 (서울대학교 공과대학 컴퓨터공학과) 임은진 (서울대학교 공과대학 컴퓨터공학과) 황희융 (서울대학교 공과대학 컴퓨터공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제11권 제3호
발행연도
1992.1
수록면
61 - 66 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
음성 인식에 신경망 모델을 적용하는 많은 연구들이 있었지만, 주된 관심은 음성인식에 적합한 구조와 학습 방법이었다. 그러나 음성인식에 신경망 모델을 적용한 시스템의 효율 향상은 모델 자체의 구조뿐 아니라, 신경망 모델의 입력으로 어떤 음성 파라미터를 사용하는가에 따라서도 큰 영향을 받는다. 본 논문은 기존 음성인식에 신경망 모델을 적용한 많은 연구들에서 사용한 음성 파라미터를 살펴보고, 대표적인 음성 파라미터 6개를 선정하여, 같은 데이타와 같은 신경망 모델 하에서 어떻게 성능이 달라지는지를 분석한다. 인식 실험에 있어서는 한국어 파열음 9개에 대한 8개 데이터 집합과 모음 8개에 대한 18개 데이터 집합을 음성 파라미터로 하고 신경망 모델은 순환 신경망 모델을 사용하여 노드의 수를 일정하게 한뒤 다양한 입력 파라미터의 성능을 비교하였다. 그 결과 선형 예측 계수로부터 얻어진 delta cepstrum의 음성 파라미터가 가장 좋은 성능을 보였으며 이때 인식률은 같은 학습 데이터에 대해 파열음 100.0%, 모음 95.1%이었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0