메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이수은 (서울시립대학교) 김한준 (서울시립대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제25권 제3호
발행연도
2020.8
수록면
1 - 13 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계학습(machine learning)이란 주어진 데이터에 대한 일반화 과정으로부터 특정 문제를 해결할 수 있는 모델(model) 생성 기술을 의미한다. 우수한 성능의 모델을 생성하기 위해서는 양질의 학습데이터와 일반화 과정을 위한 학습 알고리즘이 준비되어야 한다. 성능 개선을 위한 한 가지 방법으로서 앙상블(Ensemble) 기법은 단일 모델(single model)을 생성하기보다 다중모델을 생성하며, 이는 배깅(Bagging), 부스팅(Boosting), 스태킹(Stacking) 학습 기법을 포함한다. 본 논문은 기존 스태킹 기법을 개선한 다중 스태킹 앙상블(Multiple Stacking Ensemble) 학습기법을 제안한다. 다중 스태킹 앙상블 기법의 학습 구조는 딥러닝 구조와 유사하고 각 레이어가 스태킹 모델의 조합으로 구성되며 계층의 수를 증가시켜 각 계층의 오분류율을 최소화하여 성능을 개선한다. 4가지 유형의 데이터셋을 이용한 실험을 통해 제안 기법이 기존 기법에 비해 분류 성능이 우수함을 보인다.

목차

초록
ABSTRACT
1. 서론
2. 배경 지식 및 관련 연구
3. 다중 스태킹 앙상블 기법
4. 실험
5. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001141844