메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Liu, Xi-Wen (College of Pharmacy, Chungnam National University) Sok, Dai-Eun (College of Pharmacy, Chungnam National University)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제26권 제12호
발행연도
2003.1
수록면
1,047 - 1,054 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Molecular chaperones have a crucial role in the folding of nascent polypeptides in endoplasmic reticulum. Some of them are known to be sensitive to the modification by electrophilic metabolites of organic pro-toxicants. In order to identify chaperone proteins sensitive to alkyators, ER extract was subjected to alkylation by 4-acetamido-4 -maleimidyl-stilbene-2,2 -disulfonate (AMS), and subsequent SDS-PAGE analyses. Protein spots, with molecular mass of 160, 100, 57 and 36 kDa, were found to be sensitive to AMS alkylation, and one abundant chaperon protein was identified to be protein disulfide isomerase (PDI) in comparison with the purified PDI. To see the reactivity of PDI with cysteine alkylators, the reduced form ($PDI_{red}$) of PDI was incubated with various alkylators containing Michael acceptor structure for 30 min at $38^{\circ}C$ at pH 6.3, and the remaining activity was determined by the insulin reduction assay. Iodoacetamide or N-ethylmaleimide at 0.1 mM remarkably inactivated $PDI_{red}$ with N-ethylmaleimide being more potent than iodoacetamide. A partial inactivation of $PDI_{oxid}$ was expressed by iodoacetamide, but not N-ethylmaleimide (NEM) at pH 6.3. Of Michael acceptor compounds tested, 1,4-benzoquinone ($IC_{50}, 15 \mu$ M) was the most potent, followed by 4-hydroxy-2-nonenal and 1,4-naphthoquinone. In contrast, 1,2-naphthoquinone, devoid of a remarkable inactivation action, was effective to cause the oxidative conversion of $PDI_{red}$ to $PDI_{oxid}$. Thus, the action of Michael acceptor compounds differed greatly depending on their structure. Based on these, it is proposed that POI, one of chaperone proteins in ER, could be susceptible to endogenous or xenobiotic Michael acceptor compounds in vivo system.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0