메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이기륜 (경희대학교 건축공학과) 한충희 (경희대학교 건축공학과) 이준복 (Department of Architectural Engineering, Kyung Hee University)
저널정보
한국건설관리학회 한국건설관리학회논문집 한국건설관리학회논문집 제20권 제2호
발행연도
2019.1
수록면
3 - 12 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
국내 건설산업에서 생산성 정보는 중요성과 그 기능에도 불구하고 생산성 데이터의 수집 및 분석 방법이 체계화되어 있지 못하다. 또한 생산성 관리는 대부분 현장관리자의 경험과 직관에 의존하고 있으며 생산성 데이터를 공사계획 및 관리에 적극 활용하지 못하고 있는 상황이다. 따라서 본 연구에서는 공동주택 마감공사의 생산성 예측 및 생산성 영향요인을 분석할 수 있는 기반을 마련하기 위해 단위작업별 생산성 관련 데이터를 수집하여 딥러닝 기반의 생산성 예측모델을 개발하고자 한다. 연구결과인 딥러닝 기반의 공동주택 단위작업별 생산성 예측모델은 신뢰할 수 있는 생산성 정보 데이터에 딥러닝을 적용하여 향후 데이터가 축적될수록 발전되는 기술로 공동주택 프로젝트 관리시스템의 기본 모듈이 될 수 있다. 또한 과거 유사한 프로젝트의 생산성 데이터를 통한 개산견적, 공정계획을 위한 작업일수 산정, 투입인원 산정 등과 같은 프로젝트 엔지니어링 과정에 활용 가능하며 공사 진행 중 예측과 다른 생산성 발견 시 원인 분석에 용이하여 신속한 대응 및 향후 예방이 가능할 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0