메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이진형 (위세아이텍 인공지능팀)
저널정보
한국빅데이터학회 한국빅데이터학회지 한국빅데이터학회지 제2권 제2호
발행연도
2017.1
수록면
75 - 86 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 빅데이터의 품질을 진단하는 방법을 자동화하는 방법을 제안하고 있다. 빅데이터의 품질진단을 자동화해야 하는 이유는 4차 산업혁명이 이슈화 되면서 과거보다 더 많은 볼륨의 데이터를 발생시키고 이 데이터들을 활용 하려는 요구가 증가하기 때문이다. 데이터는 급증하지만 데이터의 품질을 진단하기 위해 많은 시간이 소비된다면 데이터를 활용하기 위해 많은 시간이 걸리거나 데이터의 품질이 낮아질 수 있다. 그러면 이러한 낮은 품질의 데이터로부터 의사결정이나 예측을 한다면 그 결과 또한 잘못된 방향을 제시할 것이다. 이러한 문제를 해결하기 위해 많은 데이터를 신속하게 진단하고 개선할 수 있는 머신러닝 이용한 빅데이터 품질 향상을 위한 진단을 자동화 할 수 있는 모델을 개발하였다. 머신러닝을 이용하여 도메인 분류 작업을 자동화하여 도메인 분류 작업 시 발생할 수 있는 오류를 예방하고 작업 시간을 단축시켰다. 연구 결과를 토대로 데이터 변환의 중요성, 학습되지 않은 데이터에 대한 학습 시킬 수 있는 방안 모색, 도메인별 분류 모델을 개발에 대한 연구를 지속적으로 진행한다면 빅데이터를 활용하기 위한 데이터 품질 향상에 기여할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0