메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Young-Ok (Biotechnology Research Division, National Fisheries Research and Development Institute) Park, In-Suk (Biotechnology Research Division, National Fisheries Research and Development Institute) Kim, Dae-Jung (New Strategy Research Center, National Fisheries Research and Development Institute) Nam, Bo-Hye (Biotechnology Research Division, National Fisheries Research and Development Institute) Kim, Dong-Gyun (Biotechnology Research Division, National Fisheries Research and Development Institute) Jee, Young-Ju (Biotechnology Research Division, National Fisheries Research and Development Institute) An, Cheul-Min (Biotechnology Research Division, National Fisheries Research and Development Institute)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제57권 제5호
발행연도
2014.1
수록면
605 - 612 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The selected isolate, Bacillus sp. SW1-1 showed antibacterial activity against both Gram-positive and Gram-negative bacteria involved in fish diseases, including Edwardsiella tarda, Streptococcus iniae, S. parauberis, Vibrio anguillarum, and V. harveyi. The Maximum bacteriocin production was observed at $30^{\circ}C$ after 24 h with brain heart infusion medium (pH 7.0). The bacteriocin SW1-1 was purified by 50% ammonium sulfate precipitation, followed by HiPrep diethylaminoethyl 16/10 FF and Sephacryl S-100 High resolution column chromatography. The substance was characterized as a bacteriocin-like inhibitory substance with a molecular mass of 38 kDa. Bacteriocin SW1-1 was sensitive to the proteolytic action of pepsin, trypsin, chymotrypsin, and protease types I and XIV, and relatively heat labile, despite the fact that bacteriocin activity was still detected after heating at $100^{\circ}C$ for 30 min. The activity of bacteriocin SW1-1 was stable in the pH range of 2.0-11.0, and relatively unaffected by organic chemicals. The bacteriocin SW1-1 had a bacteriolytic mechanism, resulting in cell wall degradation of E. tarda. These characteristics indicate that this bacteriocin may be a potential candidate for alternative agent to control important pathogens of fish diseases in aquaculture.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0