메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김종성 (경희대학교 지능 공정 및 제어 연구실) 허유 (경희대학교 공과대학 기계공학과)
저널정보
한국섬유공학회 한국섬유공학회지 한국섬유공학회지 제47권 제5호
발행연도
2010.1
수록면
314 - 321 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Short staple fibers are processed in forms of bundle, and the thickness variation of the fiber bundles plays an important role in determining the bundle quality. Since the staples in a bundle generally have a length distribution, the processed bundle thickness is affected by the fiber length distribution, which is strongly dependent on the flow dynamics during the drawing process of bundles. This study examined the effectiveness of a dynamic model for describing the roller drawing process, while considering the power form of the beard diagram for the fiber length distribution of the bundle. Two factors, the drawing ratio and fiber length distribution, were considered, and the draft ratio was set in two levels: a low drawing ratio level and a high drawing ratio level. Slivers with different beard diagrams were treated under the roller drawing operation and the output sliver thickness was measured. In addition, the output thickness was simulated based on the theoretical model. The simulation results were compared with the experimental results. The theoretical model describing the bundle flow matched the real roller drawing operation quite well, which was confirmed by the agreement of the simulation and experiments results. A low drawing ratio of the output bundle is advantageous from a quality point of view. In addition, the bundle with a fiber length distribution resulted in better linear density regularity of the output bundle than the bundle with a uniform fiber length. However, the irregularity difference due to the fiber length distribution disappeared at drawing ratios above a critical value, between 20 and 30.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0