메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정동휘 (고려대학교 공과대학 건축사회환경공학부) 정건희 (고려대학교 방재과학기술연구센터) 김중훈 (고려대학교 공과대학 건축사회환경공학부)
저널정보
한국방재학회 한국방재학회논문집 한국방재학회논문집 제10권 제1호
발행연도
2010.1
수록면
73 - 80 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
상수도관망의 최적설계는 단목적함수와 고정된 수리학적 변수로 구성된 비용최소화의 문제로 시작되었다. 하지만, 미래의 불확실한 수요량의 변동과 같이 상수도관망 내에 존재하는 여러 불확실성을 고려하여 설계하는 것이 실제 상수도관망의 거동을 보다 적절히 예측하는 것이다. 따라서 상수도관망 내 존재하는 불확실성을 양적으로 고려하는 다양한 방법이 연구되어 상수도관망의 최적설계에 반영되었고, 다목적함수를 사용한 최적화문제도 다루게 되었다. 본 연구에서는 관망의 절점에서의 수요량과 관의 조도계수를 불확실성을 가진 변수로 두고, 비용 최소화와 관망의 강건성 (Robustness)을 최대화 하는 두 가지 목적함수를 가진 다목적함수 최적화 문제를 다루었다. 최적화 과정은 비용최소화와 불확실성을 고려한 최종 최적화의 두 과정으로 나뉜다. 각 절점에서의 수요량과 관의 조도계수는 베타확률밀도함수 (Beta PDF)를 사용, Latin Hypercube 샘플링 방법으로 불확실성을 고려하였고, 다목적함수의 최적화는 유전자 알고리듬 (Multi-objective Genetic Algorithms, MOGA)을 사용하였다. 제안된 방법은 New York Tunnels이라는 실제 상수도관망에 적용하여 적용성을 검증 하였고 그 결과를 분석하였다. 다목적 최적화 문제에서 최적화가 진행될 수 록 초기 값에 모여 있던 점들이 그 점 주위를 시작으로 해 공간에 최적 해를 찾아 오른쪽 아래 부분으로 탐색해 나가는 것을 확인할 수 있었고 최적설계의 해는 해 공간에서 Pareto Front를 구성하며 파레토 최적해를 구하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0