메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
곽철 (충북대학교 전자정보대학 제어로봇공학과) 권오욱 (충북대학교 전자정보대학 제어로봇공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제30권 제3호
발행연도
2011.1
수록면
149 - 157 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 support vector machine (SVM)을 사용하여 은닉 마코프 모델 (HMM)과 심잡음 존재 정보를 결합한 새로운 심장질환 분류 방법을 제안한다. 켑스트럼 특징과 HMM 비터비 (Viterbi) 알고리듬을 이용하여 입력 신호를 모든 심장질환 모델에 대하여 상태 단위로 분할하여 상태별로 로그우도 (점수)를 계산한다. 심잡음 신호의 시간적 위치 특성을 이용하기 위하여 입력신호를 두 개의 부대역으로 나누고 부대역별로 프레임 단위의 심잡음 점수를 계산한 다음, 비터비 알고리듬으로부터 구한 상태 분할 정보를 이용하여 상태단위의 심잡음 점수를 구한다. SVM은 모든 심장질환 종류에 대한 상태 단위의 HMM과 심잡음 점수를 입력으로 하여 최종적으로 심장질환을 판정한다. 심장질환 분류 실험결과, 제안한 방법은 기존의 켑스트럼 특징과 HMM 분류기를 이용한 방법에 비하여 20.4 %의 상대적 개선율을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0