메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
부석준 (연세대학교 컴퓨터과학과) 문세민 (현대자동차) 조성배 (연세대학교 컴퓨터과학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제37권 제4호
발행연도
2018.1
수록면
256 - 261 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
차량 내부에는 BSR(Buzz, Squeak, Rattle) 세 가지 유형의 소음이 발생한다. 본 논문에서는 심층 컨볼루션 신경망으로 추출한 소음 특징에 기반하여 자동으로 차량 내부의 BSR 소음을 분류하는 분류기를 제안한다. 차량 내부의 소음은 전처리 단계에서 STFT(Short-time Fourier Transform) 알고리즘을 사용하여 소음 맵으로 표현된다. 생성된 소음 맵 내부에서 실제 소음의 위치를 정확하게 파악하기 어려운 문제에 대처하기 위해서 슬라이딩 윈도우 방법으로 분할하였다. 본 논문에서는 t-SNE(t-Stochastic Neighbor Embedding) 알고리즘을 사용하여 심층 컨볼루션 신경망 내부 파라미터를 시각화하고 정성적인 방식으로 오분류데이터를 분석하였다. 분류된 데이터의 정량적인 분석을 위해 소음의 종류별 유사도를 SSIM(Structural Similarity Index) 수치에 기반하여 정량화하여 리트랙터의 떨림음이 정상주행음과 가장 유사하다는 것을 밝혔다. 제안하는 방법의 분류기는 기타 기계학습 알고리즘 대비 최고 분류 정확도를 달성하였다(99.15%).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0