메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이문학 (한양대학교 전자컴퓨터통신공학과) 장준혁 (한양대학교 융합전자공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제38권 제5호
발행연도
2019.1
수록면
601 - 606 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 한국어 음성인식기 음향모델의 출력단위로 문자소를 제안한다. 제안하는 음성인식 모델은 한글을 G2P(Grapheme to Phoneme)과정 없이 초성, 중성, 종성 단위의 문자소로 분해하여 음향모델의 출력단위로 사용하며, 특별한 발음 정보를 주지 않고도 딥러닝 기반의 음향모델이 한국어 발음규정을 충분히 학습해 낼 수 있음을 보인다. 또한 기존의 음소기반 음성인식 모델과의 성능을 비교 평가하여 DB가 충분한 상황에서 문자소 기반 모델이 상대적으로 뛰어난 성능을 가진다는 것을 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0