메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임신철 (세종대학교 정보통신공학과) 장세진 (전자부품연구원 디지털미디어연구센터) 이석필 (전자부품연구원 디지털미디어연구센터) 김무영 (세종대학교 정보통신공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제30권 제2호
발행연도
2011.1
수록면
100 - 106 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
음원의 디지털화가 진행되면서 음악 데이터베이스가 방대해지고 있다. 따라서, 음악 데이터를 보다 효과적으로 관리하기 위해 음악의 특성에 따라 장르별로 자동 분류해주는 시스템이 필요하다. 기존 장르 분류 시스템은 대부분 Mel-Frequency Cepstral Coefficient (MFCC)를 특징 벡터로 이용하고 있다. 본 논문에서는 Auditory Filter Bank를 이용한 Decorrelated Filter Bank (DFB)와 Octave-based Spectral Contrast (OSC)에 texture window를 적용하여 특징을 추출한 후, Support Vector Machine (SVM)을 이용하여 장르 분류를 시도하였다. 기존의 Marsyas 장르 분류 시스템과 비교한 결과 DFB와 OSC로 복합적인 특징 벡터를 구성하면 더 적은 차수의 특징벡터를 사용함에도 4.2 %의 향상된 분류 성공률을 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0