메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박상욱 (고려대학교 전기전자공학과) 고경득 (고려대학교 전기전자공학과) 고한석 (고려대학교 전기전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제36권 제6호
발행연도
2017.1
수록면
401 - 406 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 양서류 울음소리를 통한 종 인식 시스템 개발을 위해, 음향 신호 분석에서 활용되는 주요 알고리즘의 인식 성능을 평가했다. 먼저, 멸종위기 종을 포함하여 총 9 종의 양서류를 선정하여, 각 종별 울음소리를 야생에서 녹음하여 실험 데이터를 구축했다. 성능평가를 위해, MFCC(Mel Frequency Cepstral Coefficient), RCGCC(Robust Compressive Gammachirp filterbank Cepstral Coefficient), SPCC(Subspace Projection Cepstral Coefficient)의 세 특징벡터와 GMM(Gaussian Mixture Model), SVM(Support Vector Machine), DBN-DNN(Deep Belief Network - Deep Neural Network)의 세 인식기가 고려됐다. 추가적으로, 화자 인식에 널리 사용되는 i-vector를 이용한 인식 실험도 수행했다. 인식 실험 결과, SPCC-SVM의 경우 98.81 %로 가장 높은 인식률을 확인 할 수 있었으며, 다른 알고리즘에서도 90 %에 가까운 인식률을 확인했다.

목차

등록된 정보가 없습니다.

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0