메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김범준 (연세대학교 전산학과) 문현기 (연세대학교 전기전자공학과) 박성욱 (강릉원주대학교 전자공학과) 박영철 (연세대학교 컴퓨터정보통신공학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제37권 제6호
발행연도
2018.1
수록면
475 - 482 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 DNN(Deep Neural Network) 기반 오디오 표식을 위한 데이터 증강 방법을 연구한다. 본 시스템에서는 오디오 신호를 멜-스펙트로그램으로 변환하여 오디오 표식을 위한 심층신경망의 입력으로 사용한다. 적은 수의 훈련 데이터를 사용하는 경우 발생하는 문제를 해결하기 위해, 타임 스트레칭, 피치 변화, 동적 영역 압축, 블록 혼합 등의 방법을 사용하여 훈련 데이터를 증강시켰다. 사용된 데이터 증강 기법의 최적 파라미터와 최적 조합을 오디오 표식 시뮬레이션을 통해 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0