메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
우소영 (건국대학교 공과대학 사회환경플랜트공학과) 정충길 (건국대학교 공과대학 사회환경플랜트공학과) 김진욱 (건국대학교 공과대학 사회환경플랜트공학과) 김성준 (건국대학교 공과대학 사회환경플랜트공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제51권 제10호
발행연도
2018.1
수록면
863 - 874 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 SWAT 모형과 random forest를 이용하여 미래 기후변화에 따른 한강유역($34,148km^2$)의 수생태계 건강성을 평가하였다. 국립환경과학원에서 8년간(2008~2015년) 봄철(4~6월)에 모니터링한 부착돌말류 지수(TDI), 저서형 대형무척추동물지수(BMI), 어류평가지수(FAI)는 0~100점, A~E등급으로 평가되며, 이를 본 연구에서 사용하였다. 수생태 건강성에 영향을 미치는 변수로는 수질(T-N, $NH_4$, $NO_3$, T-P, $PO_4$)과 수온을 선정하였으며, 수질 오염도가 낮은 경우에는 수생태계 건강성 점수가 광범위하게 분포되지만 수질 오염도가 높은 경우 수생태계 건강성 점수가 낮아지는 역상관관계를 확인하였다. 기계학습의 분류 분석 기법 중 하나인 random forest 모델을 이용한 세 개의 수생태 건강성 지수 등급분류 결과 정밀도, 재현율, f1-score 모두 0.81 이상의 예측 정확도를 나타내었다. 기상청의 HadGEM3-RA RCP 4.5와 8.5 시나리오를 적용한 미래 SWAT 수문, 수질 결과 기저유출의 증가로 인해 질소 계열 수질 농도는 기준년도 대비 최대 43.2% 증가하였고, 지표유출 감소로 인해 인 계열수질 오염도는 최대 18.9% 감소하는 것으로 분석되었다. 미래 FAI, BMI의 등급은 개선되는 경향을 보이지만 TDI는 등급이 악화되는 것으로 나타났다. 이를 통해 TDI는 질소 계열 수질에 민감하고 FAI, BMI는 인 계열 수질에 더 민감하다고 판단하였다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0