메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조희대 (미 듀베리사 수자원부) 김동균 (홍익대학교 공과대학 토목공학과) 이강희 (홍익대학교 공과대학 토목공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제47권 제3호
발행연도
2014.1
수록면
285 - 295 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
멀티모달 최적화 알고리듬의 일종인 ISPSO와 불확실도 분석기법인 GLUE를 결합한 ISPSO-GLUE 기법을 TOPMODEL의 불확실도 분석에 적용하였으며, 그 결과를 GLUE 기법과 비교하였다. 두 기법 모두 같은 횟수만큼 모형을 실행하였을 때 ISPSO-GLUE 기법의 누적성능이 더 좋아지는 시점을 발견할 수 있었으며, 그 이후로도 ISPSO-GLUE 기법은 GLUE 기법과는 달리 점진적인 성능의 향상을 보여 주었다. 두 기법이 비슷한 모양과 양상의 95% 불확실도 구간을 생성하였다. 하지만 ISPSO-GLUE 기법이 약5.4배 더 많은 관측치를 포함하는 것으로 나타났으며 GLUE 기법에 비해 훨씬 적은횟수의 모형실행으로도 좋은 성능의 불확실도 구간을 얻을 수 있는 것으로 나타났다. ISPSO-GLUE 기법과 비교했을 때GLUE 기법이 최대 첨두유량의 감쇠곡선 부분에서 불확실도를 과대평가하였다. 이 시간대에 대해서는 GLUE의 경우 불확실도 를 줄이기 위해 더 많은 행동모형들을 찾을 필요가 있다. ISPSO-GLUE 기법이 정량적인 성능평가에서 훨씬 많은 관측치를 포함할 수 있었다는 것은 이 기법의 가능성을 잘 보여 주었다고 할 수 있으며, 특히 계산적으로 값비싼 수문모형에서는 보다 큰 성능의 차이를 보일 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0