메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최연우 (서울특별시 도로관리과 도로관리팀) 이왕수 (세종대학교) 이현종 (세종대학교 건설환경공학과) 박희문 (한국건설기술연구원 인프라안전연구본부)
저널정보
한국도로학회 한국도로학회논문집 한국도로학회논문집 제20권 제5호
발행연도
2018.1
수록면
85 - 91 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSES : The objective of this study was to develop an asphalt pavement response model for a subsurface cavity section using the 3D finite element method and a statistical approach. METHODS : It is necessary to analyze the structural behavior of asphalt pavement with a subsurface cavity to evaluate the degree of risk for a road cave-in. A 3D finite element model was developed to simulate the subsurface cavity underneath asphalt pavement and was verified using the ILLIPAVE program. Finite element analysis was conducted for asphalt pavement sections with different asphalt layer thickness/modulus, and cavity depth and length, to generate the artificial pavement response database. The critical pavement response considered in this study was the tensile strain at the bottom of the asphalt layer because fatigue cracking is the main cause of road cave-in. The relationship between the critical pavement response and influencing factors was investigated using the pavement response database. The statistical regression approach was adopted to develop the asphalt pavement response model for predicting the critical pavement response of asphalt pavement with a subsurface cavity. RESULTS : It was found from the sensitivity analysis that the asphalt layer thickness or modulus, and cavity depth or length, are the major factors affecting road cave-in incidents involving asphalt pavement. The asphalt pavement response model showed high accuracy in predicting the tensile strain at the bottom of asphalt layer. It was found from the verification study that the R square value between finite element model and pavement response model were 0.969 and 0.978 in the cavity and intact sections, respectively. CONCLUSIONS :The work reported in this paper was intended to figure out the pavement structural behavior and to develop a pavement response model for the occurrence of cavities underneath asphalt pavement using 3D finite element analysis. In the future, critical pavement response will be utilized to establish the criteria of risk of road cave-in based on various different conditions.

목차

등록된 정보가 없습니다.

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0