메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송창영 ([재]한국재난안전기술원) 이종훈 ([재]한국재난안전기술원)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제31권 제2호
발행연도
2016.1
수록면
127 - 132 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, the plan to construct a disaster information categorization system that can be objectively and efficiently performed was suggested in order to perform disaster management task systematically. Recently, the damage of natural disasters is gradually growing larger and faster, increasing the economic loss. Especially, as for the domestic storm damage, the damage from strong wind was found to be greater than the damage from torrential rain. Also, strong wind was found to be inflicting a great damage on human life, property and agricultural crops, so the necessity to study damage restoration from strong wind is increasing. Nevertheless, the damage items categorized in the domestic disaster year book are often comprehensive or unclear in criteria, and thus fail to reflect items or matters due to actual disaster damage. It is difficult to aggregate damage accurately such that it does not correspond to the national compensation scope or the damage amount is calculated according to subjective judgment of the investigator in charge. As such, if the disaster information management is inadequate by not applying accurate categorization criteria from damage amount calculation, there can be an issue with fairness when paying the damage support aid. Therefore, this study suggested a categorization plan for objective and efficient execution of disaster information management task in order to resolve such issues. It is expected that quick and efficient execution would be possible in disaster information management and task procedure domestically by constructing systematic categorization system related to disaster information.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0