메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고찬영 (연세대학교 의과대학 정신과학교실 및 의학행동과학연구소) 김재진 (연세대학교 의과대학 정신과학교실 및 의학행동과학연구소) 조동래 (딥메디 기업부설 연구소) 오주영 (연세대학교 의과대학 정신과학교실 및 의학행동과학연구소) 박진영 (연세대학교 의과대학 정신과학교실 및 의학행동과학연구소)
저널정보
한국정신신체의학회 정신신체의학 정신신체의학 제27권 제2호
발행연도
2019.1
수록면
101 - 110 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
연구목적 중환자실 환자들의 섬망 발생 유무와 관련이 되어 있는 것으로 알려진 많은 임상 지표들이 있지만, 이 중 실제 섬망군과 비섬망군을 분류하는 데 있어서 어떠한 지표가 보다 중요한 역할을 하는지에 대한 연구는 충분히 이루어지지 않았다. 본 연구는 중환자실 내에서 섬망이 발생한 군과 발생하지 않은 군 사이의 재실 기간 내 특징을 비교하고, 두 군을 효과적으로 구분할 수 있는 임상 지표들을 확인하고자 하였다. 방 법 2013년 3월 1일부터 2017년 5월 31일까지 강남세브란스병원 중환자실에 있던 6386명의 환자들 중, 섬망과 연관성을 보일 것으로 예상되는 40개의 임상 지표에 대한 데이터가 재실 기간 중 적어도 한 번 이상 측정되거나, 확인이 가능한 환자 1559명을 대상으로 하였다. 무작위 부분집합 특징 선택 방법 및 주성분분석을 사용하여 섬망과 비섬망을 구분하는 데에 기여도가 높은 특징들의 순위를 구하고, 몇 개의 상위 지표가 동시에 사용되었을 때에 섬망과 비섬망을 가장 효율적으로 판별할 수 있는지를 확인하였다. 확인된 상위 지표만을 이용한 것과 전체 임상 지표를 모두 사용하였을 때의 섬망과 비섬망을 구분할 수 있는 정확도에 대해서 비교 분석하였다. 결 과 총 40개 변수 중 32개의 변수에서 섬망과 비섬망군 간 유의미한 차이를 보였다. 주성분 분석(Principal Component Analysis, PCA)상, 상위 6개 변수인 리치몬드 흥분 진정 척도(Richmond Agitation Sedation Scale, RASS), 도뇨관 사용 유무, 혈관 카테터 사용 유무, 해밀턴 불안 척도(Hamilton Anxiety Rating Scale, HAM-A), 혈액 요소 질소(Blood Urea Nitrogen, BUN), 급성 생리학 및 만성 건강 평가-II (Acute Physiology and Chronic Health Examination II, APACHE II)를 사용했을 때에 섬망과 비섬망군이 가장 잘 구분되었다. 이들 상위 6개 변수에 대해 단일 변수 로지스틱 회귀분석 시행 시 모두 섬망 여부 결정에 대한 유의성을 보였다. 다중 변수 회귀분석 시행 시, 혈관 카테터 사용 유무 를 제외하고 나머지 5개 변수에서 모두 섬망 여부 결정에 대한 유의성을 보였다. 수신자판단특성곡선 분석 결과 신뢰구간 95%에서 곡선하면적 0.818로 높은 판별력을 보였다. 전체 임상 변수를 모두 사용한 수신자판단특성곡선 분석 결과에서는 곡선하면적 0.881로 매우 높은 판별력을 보였다. 결 론 본 연구 결과, 리치몬드 흥분 진정 척도, 도뇨관 사용 유무, 혈관 카테터 사용 유무, 해밀턴 불안 척도, 혈액 요소 질소, 급성 생리학 및 만성 건강 평가-II가 섬망이 발생한 군과 섬망이 발생하지 않은 군을 구분하는데 가장 유용하였다. 중환자실 환자 중 리치몬드 흥분 진정 척도 및 해밀턴 불안 척도 점수가 과도하게 낮거나, 도뇨관 및 혈관 카테터 등의 침습적인 시술을 사용하였을 경우 좀 더 집중적인 모니터링을 통해 섬망의 가능성을 살펴보아야 할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0