메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서현정 (인천대학교 안전공학과) 김남균 (인천대학교 안전공학과) 조정민 (인천대학교 안전공학과) 이민철 (인천대학교 안전공학과)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제32권 제5호
발행연도
2017.1
수록면
149 - 156 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study investigates fire-retardant performances and combustion/thermal characteristics of fire-retardant treated wood by comparing them with those of fire-retardant untreated wood from the expreimental resutls of cone calorimeter and thermo-gravimetric(TG) analyzer. Hazardousness of combustion product gases for fire-retardant treated wood and untreasted wood were also observed from the results of internal finish material incombustibility test according to the Korea standard code of KS F 2271. In this study, we also tried to improve the fire retardant performance of wood by applying fire-retardant chemical composites, and to secure the fire safety performance in buildings. Red pine (Pinus densiflora) was selected as a test specimen because it is mostly used as a building material in Korea. Fire retardant chemical composites (FRCs) were prepared by mixing boron, phosphorous, and nitrogen species and treated by press-impregnation method. Water-based FRCs were composed of 3% boric acid($H_3BO_3$), 3% borax decahydrate($Na_2B_4O_7$), 8% ammonium carbonate($(NH_4)_2CO_3$), diammonium phosphate ($(NH_4)_2HPO_4$) varied from 10-30% and potassium carbonate($K_2CO_3$) varied from 10-30%. From the test results of cone calorimeter, TG analysis and gas hazard assessments, newly proposed were the optimal composition and production methods of FRCs which can sufficiently meet fire-retardant level 3 based on Korea law of construction. Thus, the FRCs, developed in this study, are anticipated to contribute to the improvement of fire safety and widespread of usage in wood as building materials.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0