메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최우수 (화학물질안전원 사고예방심사1과) 백종배 (한국교통대학교 안전공학과)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제33권 제5호
발행연도
2018.1
수록면
150 - 156 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As the types and usage of chemical increase, modern countries should protect their health and environment from the risk of hazardous chemical. Chemical accidents not only affect humans but also cause huge losses to the environment. Moreover, since its effects do not end in a short period of time, it is necessary to identify the extent of the damage and establish a prevention and response system in advance. In 2015, the Chemical Substances Management Act provided a system for assessing the impact on the people and the environment around the workplace. However, it is difficult to quantitatively evaluate the impact on environmental factors such as vegetation and aquatic, with the current hazard assessment methods. The purpose of this study is to analyze the quantitative risk of environmental receptors. This study improved the existing risk assessment formula by using the environmental vulnerability index and established the end point concentration criterion which can estimate the damage range to environmental media. To verify the results of the study, a virtual accident scenario was selected and a case study was conducted. As a result, the extent of impact on the environmental medium can be calculated, and the degree of environmental risk of the zone can be quantified through the risk analysis considering the environmental vulnerability. This study is expected to increase the reliability of the reliability of the existing risk anaylsis method beacause it is a risk analysis method that can be applied when the environmental factors are absolutely necessary and when the residents and environment are complex.

목차

등록된 정보가 없습니다.

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0