메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
남기태 (세명대학교 소방방재공학과) 김정진 (세명대학교 소방방재공학과) 윤석표 (세명대학교 바이오환경공학과) 김준경 (세명대학교 소방방재공학과)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제34권 제5호
발행연도
2019.1
수록면
46 - 54 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Even though the fire performance-based design concept has been introduced for various structures and buildings, which have their own specific fire performance level, the uncertainties of input parameters always exist and, then, could reduce significantly the reliability of the fire modeling. Sensitivity analysis was performed with three limited input parameters, HRRPUA, type of combustible materials, and mesh size, which are significantly important for fire modeling. The output variables are limited to the maximum HRR, the time reaching the reference temperature($60^{\circ}C$), and that to reach limited visible distance(5 m). In addition, correlation coefficient analysis was attempted to analyze qualitatively and quantitatively the degree of relation between input and output variables above. Finally, the relationship among the three variables is also analyzed by the principal component analysis (PCA) to systematically analyze the input data bias. Sensitivity analysis showed that the type of combustible materials is more sensitive to maximum HRR than the ignition source and mesh size. However, the heat release parameter of the ignition source(HRR) is shown to be much more sensitive than the combustible material types and mesh size to both time to reach the reference temperature and that to reach the critical visible distance. Since the derived results can not exclude the possibility that there is a dependency on the fire model applied in this study, it is necessary to generalize and standardize the results of this study for the fire models such as various buildings and structures.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0