메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박혜숙 (대전보건대학교 환경보건과) 김주철 (충남대학교 국제수자원연구소)
저널정보
한국물환경학회 한국물환경학회지 한국물환경학회지 제34권 제4호
발행연도
2018.1
수록면
391 - 398 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The main purpose of this study is to suggest and recommend the more reliable flow direction methods within the framework of DEM and power law distribution, by investigating the existing methodologies. To this end SFD (single flow direction method), MFD (multiple flow direction method) and IFD (Infinite flow direction method) are applied to analyze the determination of a flow direction for the water particles as seen in the Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation in that region. As the main results revealed, the study showed the different patterns of flow accumulation are found out from each applications of flow direction methods utilized in this study. This brings us to understand that as the flow dispersion on DEM increases, in this case the contributing areas to the outlet grow in sequence of SFD, IFD, MFD, but it is noted that the contribution of individual pixels into outlet decreases at that time. In what follows, especially with the MFD and IFD, the result tends to make additional hydrologic abstraction from rainfall excess, as noted due to the flow dispersion within flow paths on DEM. Based on the parameter estimation for a power law distribution, which is frequently used for identify the aggregation structure of complex system, by maximum likelihood flow accumulation can be thought of as a scale invariance factor. In this regard, the combination of flow direction methods could give rise to the more realistic water flow on DEM, as revealed through the separate flow direction methods as utilized for dispersion and aggregation effects of water flow within the available different topographies.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0