메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이계은 (현대케피코 기술연구소) 김나영 (현대케피코 기술연구소) 조영준 (현대케피코 기술연구소) 이동률 (현대케피코 기술연구소) 박성욱 (한양대학교 기계공학과)
저널정보
한국분무공학회 한국액체미립화학회지 한국액체미립화학회지 제22권 제4호
발행연도
2017.1
수록면
210 - 217 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0