메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준혁 (현대제철 보건관리팀) 김대종 (경동대학교 안경광학과) 최성원 (가톨릭대학교 의과대학 예방의학교실) 김현욱 (가톨릭대학교 의과대학 예방의학교실)
저널정보
한국산업보건학회 (구 한국산업위생학회) 한국산업보건학회지 한국산업보건학회지 제25권 제1호
발행연도
2015.1
수록면
72 - 81 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: The aim of this study was to investigate the exposure and risk assessment of residents near asbestos mines in Korea. Methods: To assess asbestos types and airborne concentrations, air monitoring was performed in the neighborhoods of Kwangcheon (KC) and Sinsuk (SS) mines, which were leading South Korean mines in the past. In addition, activity-based-sampling (ABS) of residents' particular activities were conducted in order to estimate the Excess Lifetime Cancer Risks (ELCRs) for the residents. Conclusions: The average concentration of airborne asbestos in KC was 0.0014 f/cc and 0.0015 f/cc by PCM and TEM, respectively. In SS it was equal at 0.0012 f/cc by PCM and TEM. No statistically significant difference was found in the average concentration of airborne asbestos between the two mines. The average asbestos concentration of ABS was 0.0048 f/cc (PCM) and 0.0042 f/cc (TEM) in KC, while it was 0.0137 f/cc (PCM) and 0.0125 f/cc (TEM) in SS. It was found that the average asbestos concentration of ABS in SS was statistically significantly higher than that of KC (p<0.01). The results of ELCRs by scenario in KC showed that the scenarios of bicycle, car, weed control, weed whacking, child playing in the dirt, and physical training fell within $1{\times}0^{-6}-1{\times}10^{-4}$, which is the acceptable range of ELCR. The scenarios of motorcycle, walker, digging, and field sweeping, however, exceeded the acceptable range. In SS, only the scenario of car fell within the acceptable range, while all of the other scenarios exceeded the acceptable range.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0