메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이영주 (한국정보화진흥원, 정보시스템학) 김도훈 ([주]아르스프락시아)
저널정보
한국IT서비스학회 한국IT서비스학회지 한국IT서비스학회지 제15권 제1호
발행연도
2016.1
수록면
97 - 111 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the creative economy paradigm, motivation of the opportunity based startup is a continuous concern to policy-makers. Recently, bigdata anlalytics challenge traditional methods by providing efficient ways to identify social trend and hidden issues in the public sector. In this study the authors introduce a case study using social bigdata analytics for conducting policy analysis. A semantic network analysis was employed using textual data from social media including online news, blog, and private bulletin board which create buzz on the startup business. Results indicates that each media has been forming different discourses regarding government's policy on the startup business. Furthermore, semantic network structures from private bulletin board reveal unexpected social burden that hiders opening a startup, which has not been found in the traditional survey nor experts interview. Based on these results, the authors found the feasibility of using social bigdata analysis for policy-making. Methodological and practical implications are discussed.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0