메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문성호 (Seoul National Univ. of Science and Technology)
저널정보
한국도로학회 한국도로학회논문집 한국도로학회논문집 제20권 제3호
발행연도
2018.1
수록면
59 - 64 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSES : We propose a parameter-setting-free harmony-search (PSF-HS) algorithm to determine the individual sound power levels of noise sources in the cases of industrial or road noise environment. METHODS :In terms of using methods, we use PSF-HS algorithm because the optimization parameters cannot be fixed through finding the global minimum. RESULTS:We found that the main advantage of the PSF-HS heuristic algorithm is its ability to find the best global solution of individual sound power levels through a nonlinear complex function, even though the parameters of the original harmony-search (HS) algorithm are not fixed. In an industrial and road environment, high noise exposure is harmful, and can cause nonauditory effects that endanger worker and passenger safety. This study proposes the PSF-HS algorithm for determining the PWL of an individual machine (or vehicle), which is a useful technique for industrial (or road) engineers to identify the dominant noise source in the workplace (or road field testing case). CONCLUSIONS : This study focuses on providing an efficient method to determine sound power levels (PWLs) and the dominant noise source while multiple machines (or vehicles) are operating, for comparison with the results of previous research. This paper can extend the state-of-the-art in a heuristic search algorithm to determine the individual PWLs of machines as well as loud machines (or vehicles), based on the parameter-setting-free harmony-search (PSF-HS) algorithm. This algorithm can be applied into determining the dominant noise sources of several vehicles in the cases of road cross sections and congested housing complex.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0