메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최재용 (충남대학교 산림환경자원학과) 이상혁 (충남대학교 산림환경자원학과) 이솔애 (충남대학교 산림환경자원학과) 지승용 (충남대학교 산림환경자원학과) 이상훈 (충남대학교 농업과학연구소)
저널정보
한국환경복원기술학회 환경복원녹화 환경복원녹화 제18권 제2호
발행연도
2015.1
수록면
89 - 104 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In order to effectively manage forested areas in South Korea on a national scale, using remotely sensed data is considered most suitable. In this study, utilizing Land coverage maps and Forest type maps of national geographic information instead of collecting field data was tested for conducting supervised classification on SPOT-5 and KOMPSAT-2 imagery focusing on forested areas. Supervised classification were conducted in two ways: analysing a whole area around the study site and/or only forested areas around the study site, using Support Vector Machine. The overall accuracy for the classification on the whole area ranged from 54.9% to 68.9% with kappa coefficients of over 0.4, which meant the supervised classification was in general considered moderate because of sub-classifying forested areas into three categories (i.e. hardwood, conifer, mixed forests). Compared to this, the overall accuracy for forested areas were better for sub-classification of forested areas probably due to less distraction in the classification. To further improve the overall accuracy, it is needed to gain individual imagery rather than mosaic imagery to use more spetral bands and select more suitable conditions such as seasonal timing. It is also necessary to obtain precise and accurate training data for sub-classifying forested areas. This new approach can be considered as a basis of developing an excellent analysis manner for understanding and managing forest landscape.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0