메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lim, Un-Cheon (Dept. of Electronics Eng., Hoseo Univ.)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제28권 제2호
발행연도
2009.1
수록면
43 - 50 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To get more natural synthetic speech generated by a Korean TTS (Text-To-Speech) system, we have to know all the possible prosodic rules in Korean spoken language. We should find out these rules from linguistic, phonetic information or from real speech. In general, all of these rules should be integrated into a prosody-generation algorithm in a TTS system. But this algorithm cannot cover up all the possible prosodic rules in a language and it is not perfect, so the naturalness of synthesized speech cannot be as good as we expect. ANNs (Artificial Neural Networks) can be trained to learn the prosodic rules in Korean spoken language. To train and test ANNs, we need to prepare the prosodic patterns of all the phonemic segments in a prosodic corpus. A prosodic corpus will include meaningful sentences to represent all the possible prosodic rules. Sentences in the corpus were made by picking up a series of words from the list of PB (phonetically Balanced) isolated words. These sentences in the corpus were read by speakers, recorded, and collected as a speech database. By analyzing recorded real speech, we can extract prosodic pattern about each phoneme, and assign them as target and test patterns for ANNs. ANNs can learn the prosody from natural speech and generate prosodic patterns of the central phonemic segment in phoneme strings as output response of ANNs when phoneme strings of a sentence are given to ANNs as input stimuli.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0