메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kang, Mi-Suk (Molecular and Cellular Pharmacology, University of Wisconsin) Walker, Jeffery W. (Molecular and Cellular Pharmacology, University of Wisconsin) Chung, Ka-Young (Molecular and Cellular Pharmacology, University of Wisconsin)
저널정보
한국응용약물학회 Biomolecules & Therapeutics(구 응용약물학회지) Biomolecules & therapeutics 제20권 제4호
발행연도
2012.1
수록면
386 - 392 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The endothelin (ET) signaling pathway controls many physiological processes in myocardium and often becomes upregulated in heart diseases. The aim of the present study was to investigate the effects of ET receptor upregulation on the contractile function of adult ventricular myocytes. Primary cultured adult rat ventricular myocytes were used as a model system of ET receptor overexpression in the heart. Endothelin receptor type A ($ET_A$) or type B ($ET_B$) was overexpressed by Adenoviral infection, and the twitch responses of infected ventricular myocytes were measured after ET-1 stimulation. Overexpression of $ET_A$ exaggerated positive inotropic effect (PIE) and diastolic shortening of ET-1, and induced a new twitch response including twitch broadening. On the contrary, overexpression of $ET_B$ increased PIE of ET-1, but did not affect other two twitch responses. Control myocytes expressing endogenous receptors showed a parallel increase in twitch amplitude and systolic $Ca^{2+}$ in response to ET-1. However, intracellular $Ca^{2+}$ did not change in proportion to the changes in contractility in myocytes overexpressing $ET_A$. Overexpression of $ET_A$ enhanced both systolic and diastolic contractility without parallel changes in $Ca^{2+}$. Differential regulation of this nature indicates that upregulation of $ET_A$ may contribute to diastolic myocardial dysfunction by selectively targeting myofilament proteins that regulate resting cell length, twitch duration and responsiveness to prevailing $Ca^{2+}$.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0