메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Keum, Haein (Department of Biosytems and Biotechnology, College of Life Sciences and Biotechnology, Korea University) Kang, Guyoung (Department of Environmental Science, Hankuk University of Foreign Studies)
저널정보
한국응용생명화학회 Journal of applied biological chemistry Journal of applied biological chemistry 제61권 제4호
발행연도
2018.1
수록면
335 - 340 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Hemoglobin (Hb) is a member of heme-protein that can perform catalytic non-specific chain reaction in the presence of hydrogen peroxide ($H_2O_2$). Catalytic ability of Hb to degrade pyrene was demonstrated using soil contaminated with $^{14}C$ pyrene and 10 mg pyrene /kg soil. The composition of soil was similar to previously used soil except that it had lower organic carbon content. Bench scale laboratory tests were conducted in the presence of buffer only, $H_2O_2$ only, or Hb with $H_2O_2$ for 24 h. After 24 h reaction, 0.1 and 1.3% of $^{14}C$ pyrene in contaminated soil were mineralized with $H_2O_2$ only or Hb plus $H_2O_2$. No mineralization to $^{14}CO_2$ was detected with buffer only. Approximately 12.2% of pyrene was degraded in the presence of $H_2O_2$ only while 44.0% of pyrene was degraded in the presence of Hb plus $H_2O_2$ during 24 h of catalytic reaction. When degradation intermediate products were examined, two chemicals were observed in the presence of $H_2O_2$ only while 25 chemicals were found in the presence of Hb plus $H_2O_2$. While most degradation products were simple hydrocarbons, four of the 27 chemicals had aromatic rings. However, none of these four chemicals was structurally related to pyrene. These results suggest that Hb catalytic system could be used to treat pyrene-contaminated soil as an efficient and speedy remediation technology. In addition, intermediate products generated by this system are not greatly affected by composition change in soil organic matter content.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0