메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shin, Soon-Gi (Department of Advanced Materials Engineering, College of Samcheok, Kangwon National University)
저널정보
한국재료학회 한국재료학회지 한국재료학회지 제25권 제3호
발행연도
2015.1
수록면
119 - 124 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper investigates the change of the percolation threshold in the carbon powder-filled polystyrene matrix composites based on the experimental results of changes in the resistivity and relative permittivity of the carbon powder filling, the electric field dependence of the current, and the critical exponent of conductivity. In this research, the percolation behavior, the critical exponent of resistivity, and electrical conduction mechanism of the carbon powder-filled polystyrene matrix composites are discussed based on a study of the overall change in the resistivity. It was found that the formation of infinite clusters is interrupted by a tunneling gap in the volume fraction of the carbon powder filling, where the change in the resistivity is extremely large. In addition, it was found that the critical exponent of conductivity for the universal law of conductivity is satisfied if the percolation threshold is estimated at the volume fraction of carbon powder where non-ohmic current behavior becomes ohmic. It was considered that the mechanism for changing the gaps between the carbon powder aggregates into ohmic contacts is identical to that of the connecting conducting phases above the percolation threshold in a random resister network system. The electric field dependence is discussed with a tunneling mechanism. It is concluded that the percolation threshold should be defined at this volume fraction (the second transition of resistivity for the carbon powder-filled polystyrene matrix composites) of carbon powder.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0