메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hong, Xiaobin (School of Mechanical and Automotive Engineering, South China University of Technology) Song, Gangbing (Smart Material and Structure Laboratory, Department of Mechanical Engineering, University of Houston) Ruan, Jiaobiao (Smart Material and Structure Laboratory, Department of Mechanical Engineering, University of Houston) Zhang, Zhimin (Smart Material and Structure Laboratory, Department of Mechanical Engineering, University of Houston) Wu, Sidong (School of Mechanical and Automotive Engineering, South China University of Technology) Liu, Guixiong (School of Mechanical and Automotive Engineering, South China University of Technology)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제18권 제4호
발행연도
2016.1
수록면
643 - 662 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The monitoring of structural integrity of pipeline tapered thread connections is of great significance in terms of safe operation in the industry. In order to detect effectively the loosening degree of tapered thread connection, an active sensing method using piezoceramic transducers was developed based on time reversal technique in this paper. As the piezoeramic transducers can be either as actuators or sensors to generate or detect stress waves, the energy transmission for tapered thread connection was analyzed. Subsequently, the detection principle for tapered thread connection based on time reversal was introduced. Finally, the inherent relationship between the contact area and tightness degree of tapered thread connection for the pipe structural model was investigated. Seven different contact area scenarios were tested. Each scenario was created by loosening connectors ranging from 3 turns to 4.5 turns in the right tapered threads when the contact area in the left tapered threads were 4.5 turns. The experiments were separately conducted with a highly noisy environment and various excitation signal amplitudes. The results show the focused peaks based on time reversal have the monotonously rising trend with the increase of the contact areas of tapered threads within an acceptable monitoring resolution for metal pipes. Compared with the energy method, the proposed time reversal based method to monitor tapered threads loosening demonstrates to be more robust in rejecting noise in Structural Health Monitoring (SHM) applications.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0