메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chu, Xihua (Department of Engineering Mechanics, Wuhan University) Yu, Cun (Department of Engineering Mechanics, Wuhan University) Xiu, Chenxi (Department of Engineering Mechanics, Wuhan University) Xu, Yuanjie (Department of Engineering Mechanics, Wuhan University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제55권 제2호
발행연도
2015.1
수록면
315 - 334 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study's primary aim is to check the existence of a representative volume element for granular materials and determine the link between the properties (responses) of macro structures and the size of the discrete particle assembly used to represent a constitutive relation in a two-scale model. In our two-scale method the boundary value problem on the macro level was solved using finite element method, based on the Cosserat continuum; the macro stresses and modulus were obtained using a solution of discrete particle assemblies at certain element integration points. Meanwhile, discrete particle assemblies were solved using discrete element method under boundary conditions provided by the macro deformation. Our investigations focused largely on the size effects of the discrete particle assembly and the radius of the particle on macro properties, such as deformation stiffness, bearing capacity and the residual strength of the granular structure. According to the numerical results, we suggest fitting formulas linking the values of different macro properties (responses) and size of discrete particle assemblies. In addition, this study also concerns the configuration and displacement fluctuation of discrete particle assemblies on the micro level, accompanied with the evolution of bearing capacity and deformation on the macro level.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0