메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xu, Lei (Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University) Gao, Jianmin (Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University) Zhai, Wanming (Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제63권 제5호
발행연도
2017.1
수록면
659 - 667 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rail support failure is inevitably subjected to track geometric deformations. Due to the randomness and evolvements of track irregularities, it is naturally a hard work to grasp the trajectories of dynamic responses of railway systems. This work studies the influence of rail fastener failure on dynamic behaviours of wheel/rail interactions and the railway tracks by jointly considering the effects of track random irregularities. The failure of rail fastener is simulated by setting the stiffness and damping of rail fasteners to be zeroes in the compiled vehicle-track coupled model. While track random irregularities will be transformed from the PSD functions using a developed probabilistic method. The novelty of this work lays on providing a method to completely reveal the possible responses of railway systems under jointly excitation of track random irregularities and rail support failure. The numerical results show that rail fastener failure has a great influence on both the wheel/rail interactions and the track vibrations if the number of rail fastener failure is over three. Besides, the full views of time-dependent amplitudes and probabilities of dynamic indices can be clearly presented against different failing status.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0