메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Huynh, Cong Phuoc (National ICT Australia [NICTA]) Mustapha, Samir (National ICT Australia [NICTA]) Runcie, Peter (National ICT Australia [NICTA]) Porikli, Fatih (National ICT Australia [NICTA])
저널정보
테크노프레스 Structural monitoring and maintenance Structural monitoring and maintenance 제2권 제3호
발행연도
2015.1
수록면
181 - 197 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Assessing the condition of paint on civil structures is an important but challenging and costly task, in particular when it comes to large and complex structures. Current practices of visual inspection are labour-intensive and time-consuming to perform. In addition, this task usually relies on the experience and subjective judgment of individual inspectors. In this study, hyperspectral imaging and classification techniques are proposed as a method to objectively assess the state of the paint on a civil or other structure. The ultimate objective of the work is to develop a technology that can provide precise and automatic grading of paint condition and assessment of degradation due to age or environmental factors. Towards this goal, we acquired hyperspectral images of steel surfaces located at long (mid-range) and short distances on the Sydney Harbour Bridge with an Acousto-Optics Tunable filter (AOTF) hyperspectral camera (consisting of 21 bands in the visible spectrum). We trained a multi-class Support Vector Machines (SVM) classifier to automatically assess the grading of the paint from hyperspectral signatures. Our results demonstrate that the classifier generates highly accurate assessment of the paint condition in comparison to the judgement of human experts.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0