메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ishak, Izuan Amin (Wind Engineering, Malaysia-Japan International Institute of Technology, UTM Kuala Lumpur) Alia, Mohamed Sukri Mat (Wind Engineering, Malaysia-Japan International Institute of Technology, UTM Kuala Lumpur) Salim, Sheikh Ahmad Zaki Shaikh (Wind Engineering, Malaysia-Japan International Institute of Technology, UTM Kuala Lumpur)
저널정보
테크노프레스 Wind & structures Wind & structures 제24권 제3호
발행연도
2017.1
수록면
223 - 247 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0