메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jiang, Lei (Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University) Wang, Yan (Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University) Bjorn, Lars Olof (Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University) Li, Shaoshan (Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University)
저널정보
한국광과학회 Photochemical & photobiological sciences : an international journal Photochemical & photobiological sciences : an international journal 제8권 제6호
발행연도
2009.1
수록면
838 - 846 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The Arabidopsis radical-induced cell death1 (rcd1) mutant is sensitive to ozone fumigation and apoplastic superoxide, but tolerant to methyl viologen. In the present article, we report that the rcd1 mutant is also tolerant to supplementary UV-B radiation. The rcd1-1 mutant exhibits less accumulation of TT dimers, increased hypocotyl growth inhibition and higher accumulation of flavonoids under supplemental UV-B radiation. Moreover, the expression of HY5 (ELONGATED HYPOCOTYL5) is increased in the mutant after UV-B treatment. Gene expression downstream of UV-B signaling reveals that COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1)-regulated genes have an elevated expression in rcd1-1 mutant under UV-B radiation, while expression of UVR8 (UV RESISTANCE LOCUS 8)-regulated and HY5-independent genes are not changed. Interestingly, the expression of RCD1 genes is not significantly changed by UV-B radiation. Previous study has shown that STO protein is interacting with RCD1 in vitro. Here, we found the mRNA level of STO (SALT TOLERANCE) is greatly increased in rcd1-1 mutant after UV-B radiation. However, UV-B-induced HY5 and CHS expression is partially inhibited in sto mutant. Based on the above results, it is deduced that the RCD1, working together with STO, is involved in Arabidopsis UV-B signaling.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0