메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hong, Yoo Rha (Department of Pediatrics, College of Medicine, Kosin University) Moon, Eunsoo (Department of Psychiatry, Pusan National University Hospital)
저널정보
영남대학교 의과대학 영남의대학술지 영남의대학술지 제35권 제1호
발행연도
2018.1
수록면
63 - 69 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Kinovea software that tracking semi-automatically the motion in video screen has been used to study motion-related tasks in several studies. However, the validation of this software in open field test to assess locomotor activity have not been studied yet. Therefore, this study aimed to examine the reliability and validity of this software in analyzing locomotor activities. Methods: Thirty male Institute Cancer Research mice were subjected in this study. The results examined by this software and the classical method were compared. Test-retest reliability and inter-rater reliability were analyzed with Pearson's correlation coefficient and intraclass correlation coefficient (ICC). The validity of this software was analyzed with Pearson's correlation coefficient. Results: This software showed good test-retest reliability (ICC=0.997, 95% confidence interval [CI]=0.975-0.994, p<0.001). This software also showed good inter-rater reliability (ICC=0.987, 95% CI=0.973-0.994, p<0.001). Furthermore, in three analyses for the validity of this software, there were significant correlations between two methods (Pearson's correlation coefficient=0.928-0.972, p<0.001). In addition, this software showed good reliability and validity in the analysis locomotor activity according to time interval. Conclusion: This study showed that this software in analyzing drug-induced locomotor activity has good reliability and validity. This software can be effectively used in animal study using the analysis of locomotor activity.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0