메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Park, Jaesub (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) Lee, Sunjae (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) Kim, Kiseong (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) Lee, Doheon (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology)
저널정보
한국생물정보시스템생물학회 Interdisciplinary Bio Central Interdisciplinary Bio Central 제5권 제2호
발행연도
2013.1
수록면
31 - 37 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, the productivity of drug discovery has gradually decreased as the limitations of single-target-based drugs for various and complex diseases become exposed. To overcome these limitations, drug combinations have been proposed, and great efforts have been made to predict efficacious drug combinations by statistical methods using drug databases. However, previous methods which did not take into account biological networks are insufficient for elaborate predictions. Also, increased evidences to support the fact that drug effects are closely related to metabolic enzymes suggested the possibility for a new approach to the study drug combinations. Therefore, in this paper we suggest a novel approach for analyzing drug combinations using a metabolic network in a systematic manner. The influence of a drug on the metabolic network is described using the distance between the drug target and an enzyme. Target-enzyme distances are converted into influence scores, and from these scores we calculated the correlations between drugs. The result shows that the influence score derived from the targetenzyme distance reflects the mechanism of drug action onto the metabolic network properly. In an analysis of the correlation score distribution, efficacious drug combinations tended to have low correlation scores, and this tendency corresponded to the known properties of the drug combinations. These facts suggest that our approach is useful for prediction drug combinations with an advanced understanding of drug mechanisms.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0