메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cho, Hong-Gyu (Graduate School, Kyonggi University) Kim, Kyong-Gon (Graduate School, Kyonggi University) Kim, Jang-Young (The fifth rank official, Gyeonggi Provincial office of Education) Kim, Gwang-Hee (Dept. of Plant & Architectural Engineering, Kyonggi University)
저널정보
한국건축시공학회 한국건축시공학회지 한국건축시공학회지 제13권 제1호
발행연도
2013.1
수록면
66 - 74 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the early stages of a construction project, the most important thing is to predict construction costs in a rational way. For this reason, many studies have been performed on the estimation of construction costs for apartment housing and office buildings at early stage using artificial intelligence, statistics, and the like. In this study, cost data held by a provincial Office of Education on elementary schools constructed from 2004 to 2007 were used to compare the multiple regression model with an artificial neural network model. A total of 96 historical data were classified into 76 historical data for constructing models and 20 historical data for comparing the constructed regression model with the artificial neural network model. The results of an analysis of predicted construction costs were that the error rate of the artificial neural network model is lower than that of the multiple regression model.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0