메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xu, Leiqing (College of Architecture and Urban Planning, Tongji University) Xia, Zhengwei (School of Civil Engineering and Architecture, Changzhou Institute of Technology)
저널정보
한국초고층도시건축학회 International journal of high-rise buildings International journal of high-rise buildings 제5권 제2호
발행연도
2016.1
수록면
95 - 103 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
One of the key problems in the design of high-rise commercial complex is how to guide reasonable pedestrian distribution in commercial space. In this study, pedestrian distribution in three high-rise commercial complexes in Shanghai and Hong Kong was studied using spatial configuration analysis software Space Syntax and quantification of physical elements in commercial spaces, such as functional attractiveness, entrances, escalators, level variations and passage width. Additionally, in an attempt to integrate functions with spatial integration and spatial depth, two combination variables, the spatial coefficient of function (IF) and spatial depth coefficient of function (F/D), were proposed. The results of the correlation analysis and multiple regression analyses reflected the following: (1) Regarding the influence on pedestrian distribution, there was a synergistic and complementary relationship between function and space; (2) The comprehensive flow distribution analytic model could successfully interpret flow distribution in high-rise commercial complexes and its R Square ranged up to about 70% in the three cases; (3) The spatial coefficient of function (IF) and spatial depth coefficient (F/D) could effectively integrate functions and spatial configuration, which could help close the gap between over-emphasis on function in commercial research and the lack of consideration of function in space-syntax analysis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0