메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Russell, Martha G. (Stanford University) Still, Kaisa (VTT Technical Research Centre) Huhtamaki, Jukka (Tampere University of Technology) Rubens, Neil (Transport and Telecommunication Institute)
저널정보
세계과학도시연합 World technopolis review : WTR World technopolis review : WTR 제5권 제1호
발행연도
2016.1
수록면
47 - 60 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In today's digital non-linear global business environment, innovation initiatives are influenced by inter-organizational, political, economic, environmental, technological systems, as well as by decisions made individually by key actors in these systems. Network-based structures emerge from social linkages and collaborations among various actors, creating innovation ecosystems, complex adaptive systems in which entities co-create value. A shared vision of value co-creation allows people operating individually to arrive together at the same future. Yet, relationships are difficult to see, continually changing and challenging to manage. The Innovation Ecosystem Transformation Framework construct includes three core components to make innovation relationships visible and articulate networks of relational capital for the wellbeing, sustainability and business success of innovation ecosystems: data-driven visualizations, storytelling and shared vision. Access to data facilitates building evidence-based visualizations using relational data. This has dramatically altered the way leaders can use data-driven analysis to develop insights and provide ongoing feedback needed to orchestrate relational capital and build shared vision for high quality decisions about innovation. Enabled by a shared vision, relational capital can guide decisions that catalyze, support and sustain an ecosystemic milieu conducive to innovation for business growth.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0